Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conse...

متن کامل

Algebraic multigrid for higher-order finite elements

Two related approaches for solving linear systems that arise from a higher-order finite element discretization of elliptic partial differential equations are described. The first approach explores direct application of an algebraic-based multigrid method (AMG) to iteratively solve the linear systems that result from higher-order discretizations. While the choice of basis used on the discretizat...

متن کامل

New robust nonconforming finite elements of higher order

We study second order nonconforming finite elements as members of a new family of higher order approaches which behave optimally not only on multilevel refined grids, but also on perturbed grids which are still shape regular but which consist no longer of asymptotically affine equivalent mesh cells. We present two approaches to prevent this order reduction: The first one is based on the use of ...

متن کامل

Higher - Order Finite Elements on Pyramids

We present a construction of high order finite elements for H1, H(curl), H(div) (and L2) on a pyramid, which are compatible with existing tetrahedral and hexahedral high order finite elements and satisfy the commuting diagram property.

متن کامل

Geodesic Finite Elements of Higher Order

We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2009

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-009-9334-9